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Only select prokaryotes can biosynthesize vitamin B12 (i.e., cobalamins), but these

organic co-enzymes are required by all microbial life and can be vanishingly scarce across

extensive ocean biomes. Although global ocean genome data suggest cyanobacteria to

be a major euphotic source of cobalamins, recent studies have highlighted that >95% of

cyanobacteria can only produce a cobalamin analog, pseudo-B12, due to the absence of

the BluB protein that synthesizes the α ligand 5,6-dimethylbenzimidizole (DMB) required

to biosynthesize cobalamins. Pseudo-B12 is substantially less bioavailable to eukaryotic

algae, as only certain taxa can intracellularly remodel it to one of the cobalamins.

Here we present phylogenetic, metagenomic, transcriptomic, proteomic, and chemical

analyses providing multiple lines of evidence that the nitrogen-fixing cyanobacterium

Trichodesmium transcribes and translates the biosynthetic, cobalamin-requiring BluB

enzyme. Phylogenetic evidence suggests that the Trichodesmium DMB biosynthesis

gene, bluB, is of ancient origin, which could have aided in its ecological differentiation

from other nitrogen-fixing cyanobacteria. Additionally, orthologue analyses reveal two

genes encoding iron-dependent B12 biosynthetic enzymes (cbiX and isiB), suggesting

that iron availability may be linked not only to new nitrogen supplies from nitrogen fixation,

but also to B12 inputs by Trichodesmium. These analyses suggest that Trichodesmium

contains the genus-wide genomic potential for a previously unrecognized role as a source

of cobalamins, which may prove to considerably impact marine biogeochemical cycles.

Keywords: cobalamin, trichodesmium, Vitamin B12, iron limitation, Cyanobacteria, BluB gene, nitrogen fixation

INTRODUCTION

Marine cyanobacteria and eukaryotic algae are estimated to be responsible for up to 50% of
global carbon fixation, and can be limited by both macronutrients (e.g., nitrogen and phosphorus)
and micronutrients (e.g., iron) (Field et al., 1998; Arrigo, 2005; Hutchins et al., 2009; Hutchins
and Boyd, 2016). Organic coenzymes known as B-vitamins have also been implicated to limit
primary production and influence microbial community structure (Panzeca et al., 2006; Sañudo-
Wilhelmy et al., 2014; Suffridge et al., 2017). B-vitamins are soluble, non-protein molecules that
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bind to enzymes to increase reaction rates and are required
for essential cellular processes such as DNA repair, redox
reactions, photosynthesis, and carbon fixation (Monteverde
et al., 2016). Most eukaryotic algae (Droop, 2007) and many
heterotrophic bacteria (Giovannoni et al., 2005) have obligate
B-vitamin requirements (e.g., auxotrophy) for processes like
reductive dehalogenation and fatty acid biosynthesis, with
growth requiring assimilation via exogenous sources including
breakdown of vitamin-containing cells and/or interactions with
vitamin-producing bacteria and archaea (Stadtman et al., 1960;
Mohn and Tiedje, 1992; Bertrand et al., 2015; Heal et al., 2016).
Microbes that do not have an absolute requirement for B12
employ B12-independent versions of certain enzymes such as
the B12-independent methionine synthase (MetE) and the B12-
independent radical SAM DNA methyltransferases (Heal et al.,
2016).

Some chemical form of vitamin B12 is required by all microbial
life for a range of functions, including methionine biosynthesis,
ribonucleotide reduction, photoregulation, and various one-
carbon metabolisms (Sañudo-Wilhelmy et al., 2014; Fang et al.,
2017). Vitamin B12 is a general term referring to cobalt-
containing corrinoids (i.e., molecules containing a corrin ring)
that contain upper (β) and lower (α) axial ligands to the cobalt
ion that can vary depending on functionality (Eschenmoser and
Wintner, 1977; Warren et al., 2002; Helliwell et al., 2016). A
primary type of B12, cobalamin (CBL), is a complex coenzyme
with an α ligand of 5,6-dimethylbenzimidizole (DMB), and a β

ligand of either an adenosyl-, methyl-, cyanide-, or hydroxyl-
group (Ado-, Me-, CN-, or OH-; Heal et al., 2016; Figure 1).
For example, methylcobalamin (Me-CBL) has a methyl group
as its β ligand and is involved in methylation reactions, whereas
adenosylcobalamin (Ado-CBL, coenzyme B12) has an adenosyl
group (5–deoxyadenosine) and is involved in radical-based
rearrangements and reductions (Banerjee and Ragsdale, 2003).

Many marine microbes have an absolute requirement for
B12 (Bertrand et al., 2013), and locally produced cobalamin
is likely the predominant source for microbial assimilation
due to its short (hours to days) residence time in the surface
ocean (Carlucci et al., 1969; Bertrand et al., 2015). Those
microbes that can grow without cobalamins must do so at a
metabolic cost, using an alternative methionine synthase (MetE)
that is relatively less-efficient than the B12-dependent MetH
enzyme (Helliwell et al., 2016). These biochemical constraints
and environmental interactions highlight B12 as a potential
driver of ecological niche partitioning in marine environments.
Thaumarchaeota (Doxey et al., 2015; Santoro et al., 2015) and
both heterotrophic bacteria (Croft et al., 2005) and cyanobacteria
(Bonnet et al., 2010) are hypothesized to be major cobalamin
producers in the ocean, thereby potentially modulating overall
primary productivity. However, recent studies have indicated
that most cyanobacteria produce a cobalamin analog, pseudo-
B12 (Taga and Walker, 2008), where adenine substitutes for
DMB as the α ligand (Heal et al., 2016; Helliwell et al., 2016)
(Figure 1). The compound DMB is synthesized aerobically by
the BluB enzyme, or anaerobically via enzymes of the bza operon
(Hazra et al., 2015; Mehta et al., 2015). A recent assessment found
that only one cyanobacterial genome out of 255 contained an

annotated bluB gene (Heal et al., 2016), and a targeted search
of 118 cyanobacterial genomes found it in only five species,
while none contain the bza operon (Helliwell et al., 2016).
Indeed, numerous BluB-lacking strains of the globally distributed
Synechococcus and Prochlorococcus genera solely biosynthesize
pseudo-B12 (Heal et al., 2016; Helliwell et al., 2016). Additionally,
pseudo-B12 is used less efficiently than cobalamin for several
B12-dependent algae, and only certain algae can intracellularly
remodel (i.e., salvage) pseudo-B12 to cobalamin in the presence
of exogenous DMB (Helliwell et al., 2016). Cultured algae
whose growth could be rescued with supplemented pseudo-
B12 + DMB could not grow in natural seawater supplemented
with pseudo-B12 alone, thereby indicating DMB concentrations
to be insufficient in certain habitats (Helliwell et al., 2016).
In contrast, bluB-containing bacteria and archaea synthesize
only cobalamin (Heal et al., 2016). Although BluB synthesizes
DMB, the enzyme CobT has been found to be necessary for its
activation across most microbial phyla studied to date (Croft
et al., 2006; Escalante-Semerena, 2007; Yan et al., 2018). The bluB-
containing Thaumarchaeota however solely produce cobalamin
despite lacking cobT, demonstrating that DMB activation may
occur through a similar enzymewith high sequence divergence or
through a different, yet unknown, genetic mechanism (Heal et al.,
2016). Trichodesmium may also employ a different activation
mechanism than the previously identified CobT, as described
below.

Heal et al. (2016) detected both particulate pseudo-B12
and cobalamin in the North Pacific surface ocean at similar
concentrations (0.01 to 0.1 pM L−1), yet solely cobalamin
beneath the photic zone. This co-occurrence at the surface
suggests that bluB-lacking cyanobacteria synthesize pseudo-
B12 in the presence of cobalamin, and that cobalamin in
the surface ocean could be a result of either de novo
synthesis by heterotrophic microbes, or remodeled pseudo-B12
originally from cyanobacteria. Hence, cyanobacteria may gain a
competitive advantage by producing and solely requiring pseudo-
B12 for growth, as this avoids them directly supplying other
cobalamin-requiring photoautotrophs.

In contrast, marine nitrogen-fixing cyanobacteria
(diazotrophs) directly supply both fixed carbon and
nitrogen, thereby impacting marine primary productivity
and biogeochemical cycling (Falkowski et al., 1998; Sohm
et al., 2011). The globally distributed colony-forming diazotroph,
Trichodesmium, is among themost important global contributors
of bioavailable nitrogen in the oligotrophic oceans with some
estimates suggesting it to make up as much as half of total
N2 fixation in the vast subtropical gyre regions (Zehr, 2011;
Hutchins et al., 2015). Trichodesmium can form extensive,
recurring blooms in the Arabian and Red seas and Atlantic and
Pacific oceans (Walworth et al., 2015). It serves as a millimeter-
sized substrate for prokaryotic and eukaryotic microbial
consortia (Bergman et al., 2013; Lee et al., 2017a) and also
provides organic metabolites via excretion (Capone et al., 1994).
Another common albeit less prevalent marine diazotroph, the
unicellular genus Crocosphaera, excretes B-vitamins in culture
at rates that exceed those of non-diazotrophic cyanobacteria
(Bonnet et al., 2010), and recent studies have shown excretion of
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FIGURE 1 | Diagram of different forms of cobalamin, Psuedo-B12 and proposed cobalamin biosynthetic and salvage pathways. (A) The ellipse represents the

cobalt-containing corrin ring, and listed are the various α-axial and β-axial ligands. (B) Displayed is the fully predicted pathway for B12 biosynthesis including potential

salvage pathways.
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B-vitamin precursors in marine heterotrophic bacteria known
to associate with phytoplankton blooms (Wienhausen et al.,
2017). Despite intensive study on the global distribution and
ecophysiology of Trichodesmium, knowledge about its capacity
to biosynthesize and salvage critical cobalamin-type coenzymes
is lacking.

Recently, we conducted a 7-year experimental evolution
study adapting Trichodesmium erythraeum IMS101 (IMS101)
to high CO2 under multiple limiting nutrient regimes. We
generated a series of functional genomic datasets to explore
both its molecular evolution (Hutchins et al., 2015; Walworth
et al., 2016) and its ecological relationship with its epibiotic
consortia (Lee et al., 2017a). While not originally intended
to examine B-vitamin metabolism, we conducted a meta-
analysis of our functional genomic datasets combined with
other Trichodesmium metagenomic (Walworth et al., 2015),
and phylogenetic data, which revealed strong evidence that
the Trichodesmium genus can biosynthesize and salvage
cobalamin in situ. Additionally, we substantiate molecular
results by measuring intracellular cobalamin concentrations
from our remaining long-term Trichodesmium samples
using liquid chromatography coupled to mass spectrometry
(LCMS) (Suffridge et al., 2017), thereby providing evidence
of metabolized cobalamin. Corrin ring biosynthesis and
adenosylation is conserved among cyanobacteria (Heal et al.,
2016) indicating their presence within the phylum when it
originally diverged. We conducted further phylogenetic analyses
to explore the potential alternative origins of the bluB gene
necessary for DMB biosynthesis, which may help elucidate
B12 niche partitioning of Trichodesmium from co-occurring,
sympatric cyanobacterial taxa including other diazotrophs and
the cosmopolitan non-N2-fixing genera, Prochlorococcus and
Synechococcus. We also describe B12-associated transcripts
deriving from the Trichodesmium bacterial epibiotic community
to examine a possible role of intra-colony cobalamin cycling.
This previously unreported (Capone et al., 1997; Sohm et al.,
2011; Bergman et al., 2013; Walworth et al., 2015) potential
source of cobalamin deriving from either Trichodesmium, its
epibionts, or both provide evidence for yet another critical role
that Trichodesmiummay serve by supplying a potentially limiting
organic micronutrient to the surrounding microbial community.
Further, comparative phylogenetic analyses highlight divergent
sequence domains of cyanobacterial B12 biosynthetic and
salvage pathways relative to other sequenced prokaryotes.
Finally, we use comparative orthologue analyses to highlight
the possible association of two B12 biosynthetic genes with
environmental iron supply, suggesting simultaneous influence
of both Trichodesmium nitrogen fixation and B12 production by
this limiting trace element.

MATERIALS AND METHODS

Sequence Analyses
Gene sequences for the cultured T. erythraeum isolates
IMS101 and 2175 were downloaded from the Integrated
Microbial Genomes (IMG) website (https://img.jgi.doe.gov/),
and Trichodesmium environmental metagenomic sequence data

was used from Walworth et al. 2015 (Walworth et al., 2015).
Sequences were searched against the RefSeq protein database
(Tatusova et al., 2015) using the BLASTP algorithm (Altschul
et al., 1990), and all high-scoring pairs were retained if the
aligned portion spanned >70% of the original query length
with an evalue < 10−5. Duplicate sequences were removed
with USEARCH (Edgar, 2010). All sequences were aligned
with MUSCLE v3.8.31 with default settings (Edgar, 2004), and
spurious sequences and poorly aligned regions were removed
with trimAl 1.2rev59 (Capella-Gutiérrez et al., 2009). RAxML
(Stamatakis, 2015) was used for all maximum likelihood
phylogenetic analyses with the following settings: -f a -p 12345 -m
PROTCATLG -N 100 -x 12345.

Culturing and Molecular Analyses
Culturing and sampling for RNA and protein of T. erythraeum
IMS101 was done as previously described (Walworth et al., 2015).
Briefly, semi-continuous cultures growing in replete Aquil media
(0.37 nM of added B12 as cyanocobalamin) without added fixed
nitrogen and a 12:12 light:dark cycle (light intensity of 120 µmol
photons per meter squared per second) at 26◦C were filtered
in biological duplicate at midday onto 5 um polycarbonate
filters (Whatman), immediately flash frozen, and stored in
liquid nitrogen. In an additional set of experiments, triplicate
cultures were grown for ∼20 generations using the same growth
medium, but without added cyanocobalamin, to determine if
IMS101 can grow in culture without a supplementary source
of B12.

RNA was extracted using the Ambion MirVana miRNA
Isolation Kit (Thermo Fisher Scientific) in an RNAse free
environment as per the manufacturer’s instructions, followed
by Ambion’s Turbo DNA-free kit to degrade trace amounts
of DNA. RNA was then submitted to the UC San Diego
Institute for Genomic Medicine (IGM) core for library
preparation and sequencing (http://igm.ucsd.edu/genomics/
services.shtml). Briefly, rRNA removal and library construction
was done with the TruSeq Stranded RNA Library Prep kit
(Illumina), and multiplexed libraries were sequenced using
the Illumina Hi-Seq yielding single-end, 50-base pair reads.
Raw fastq files were quality trimmed and filtered with
Trimmomatic version 0.35 (Bolger et al., 2014) with the following
settings: SE -threads 35 -phred33 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:35. Trimmed fastq files were
then mapped onto IMS101 IMG-called genes (https://img.jgi.
doe.gov/) using Bowtie2 v2.2.5 with default settings (Langmead
and Salzberg, 2012), and the resulting count matrix was
subjected to TMM normalization using edgeR (Robinson et al.,
2010). Please see Supplementary Information for consortia
read processing and annotation. Protein spectral counts were
downloaded directly from a previously published proteome study
using these same IMS101 cell lines (Walworth et al., 2016).

Particulate B-Vitamin Analyses
Cobalamins were extracted from biological duplicate frozen
filters from long-term IMS101 cultures grown in seawater
medium containing containing 0.37 nM cyanocobalamin
(Walworth et al., 2016), as previously described (Suffridge
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et al., 2017). See Supplementary Information for a brief method
description.

RESULTS AND DISCUSSION

Evidence for Cobalamin Biosynthesis in
Trichodesmium
The bluB gene required for aerobic DMB synthesis for cobalamin
production has only been detected in five cyanobacterial
species (Helliwell et al., 2016), none of which are abundant
or quantitatively important in marine ecosystems. Phylogenetic
analysis reveals that Trichodesmium bluB homologs from two T.
erythraeum strains isolated 10 years apart (IMS101 and 21-75)
(Walworth et al., 2015) and an environmental Trichodesmium
metagenomic sample form their own clade among heterotrophic
bacteria (Figure 2). While it is difficult to speculate as to whether
the other cyanobacteria possessing bluB homologs acquired them
independently or if other cyanobacteria have selectively lost
their copies, this analysis suggests the possibility that bluB has
been frequently horizontally transferred and retained between
many members of the Proteobacteria and Bacteroidetes phylum
(Figure 2).

RNA and protein extracted midday from long-term IMS101
cultures growing semi-continuously (Walworth et al., 2016)
demonstrate bluB to be both actively transcribed and translated
into protein (Table S1). The detection of the BluB protein
provides strong evidence for active DMB biosynthesis because
although genes can be constitutively transcribed at basal
levels, bioenergetic investment dramatically increases at the
translational level (Lynch and Marinov, 2015). Additionally,
since half-lives of bacterial mRNA transcripts are typically
short-lived relative to proteins (Rauhut and Klug, 1999),
detection of both bluB transcripts and BluB proteins lend
further evidence of persistent activity. Furthermore, all B12
biosynthetic genes were actively expressed, of which numerous
corresponding protein products were also detected (Table S1).
Interestingly, the B12-dependent (metH) and B12-independent
(metE) methionine synthases were also both transcribed and
translated in the presence of exogenously supplied cobalamin
with metE transcripts and protein levels being ∼10X (p < 10−4)
and ∼5X (p < 0.05) higher, respectively, than those of
metH (Figure 3A). Prior analysis of bacterial MetE suggests
reduced enzyme efficiency relative to MetH (Bertrand et al.,
2013; Helliwell et al., 2016), which may explain the increased
abundances of MetE transcripts and protein relative to those of
MetH. Nonetheless, it is noteworthy that transcripts and proteins
of both forms were detected in the presence of cobalamin,
suggesting Trichodesmium to persistently utilize both versions of
the enzyme irrespective of environmental cobalamin supply.

Additionally, we applied a recently developed method that
measures particulate B12 concentrations directly from cell lysates
to the remaining samples from the long-term Trichodesmium
experiment (Walworth et al., 2016), which detected intracellular
cobalamins in IMS101 trichomes at a concentration of ∼58 pM
(Figure S1) (Suffridge et al., 2017). Hence, these measurements
suggest the ability of IMS101 to metabolize cobalamins either

from salvage or biosynthesis pathways. To assess if physiology
is impacted without exogenously supplied B12, we performed
additional physiology experiments examining growth and
nitrogen fixation rates of IMS101 with and without added
cobalamin (Methods) and found no difference in either condition
(Figure 3B; p > 0.05). Hence, Trichodesmium does not require
added B12 in culture medium, which further supports an ability
to biosynthesize and/or salvage B12.

Notably, both Trichodesmium trichomes and colonies (i.e.,
aggregated trichomes) harbor physically attached microbial
consortia comprised of hetero- and phototrophs, including other
cyanobacteria, both in culture (Lee et al., 2017a,b) and in situ
(Hewson et al., 2009; Rouco et al., 2016). To our knowledge
no axenic Trichodesmium cultures currently exist. Because it is
therefore impossible to absolutely differentiate potential sources
of cobalamin deriving from either IMS101 itself or its microbial
epibionts, the active production of both the BluB protein and its
transcripts in Trichodesmium cells provides the clearest evidence
for cobalamin production in IMS101. Additionally, although the
biomass and proportional expression of other cyanobacteria is
exceedingly low relative to that ofTrichodesmium in colonies (Lee
et al., 2017a; 75–80% of RNA sequencing reads mapped to the
IMS101 genome with the remaining mapping to the rest of the
consortia), it would also be prohibitively difficult to completely
disentangle sources of pseudo-B12 in the particulate fraction if
other cyanobacteria were indeed attached to IMS101.

As in naturally occurring colonies isolated in situ (Hewson
et al., 2009), our IMS101 cultures contain trace amounts of
Synechococcus (Lee et al., 2017a), thereby obstructing the
ability to specifically detect pseudo-B12 from Trichodesmium.
We also detected transcripts of B12 biosynthesis/salvage
genes deriving from both Synechococcus and heterotrophic
genera in the Trichodesmium epibiotic community (Table
S1). Interestingly, only the btuR gene was detected in
heterotrophic bacterial transcripts, which can be involved
in either biosynthesis or salvage pathways (see below) while
both btuR and the B12 biosynthetic gene, cbiB, was detected in
cyanobacterial transcripts suggesting production of pseudo-B12
by Synechococcus. However, since no other B12 biosynthesis
genes were detected in heterotrophic transcripts other than
btuR, this opens the door for further investigation pertaining
to the sources and sinks of cobalamins between Trichodesmium
and its heterotrophic epibionts. A recent genome analysis of
IMS101 heterotrophic epibionts revealed that an associated
Alteromonas macleodii genome from this isolate is indeed a
B12 auxotroph (Lee et al., 2017a). Moreover, the detection
of consortia btuR genes may have implications for the use
of organically complexed cobalt, which dominates cobalt
speciation in most euphotic zone environments (Saito et al.,
2005). Additional studies with Trichodesmium colonies devoid
of other cyanobacteria coupled to direct measurements of both
cobalamin and pseudo-B12 are necessary to determine whether
these two forms are simultaneously produced by IMS101 in the
particulate fraction.

Further evidence for the ability of Trichodesmium to produce
cobalamins comes from the widespread conservation of the
bluB gene in Trichodesmium genomes sampled directly in situ
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FIGURE 2 | Maximum likelihood phylogenetic tree of bluB homologs. Unrooted, 100 bootstraps, values > 50 noted. Scale bar represents average substitutions per

site.

and in the genome of T. erythraeum strain 2175 isolated 10
years after IMS101 (Figure 2). Upon searching a Trichodesmium
metagenome sequenced from hand-picked natural colonies

(Walworth et al., 2015), the bluB gene was detected via
BLAST(Altschul et al., 1990) with 90% similarity and evalue
≤ 10−123. Accordingly, BLAST searches with this metagenomic
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FIGURE 3 | (A) Normalized RNA transcript and protein spectral counts of MetH and MetE from cultures grown in the presence of cyanocobalamin, respectively, and

(B) growth and N2 fixation data of IMS101 after ∼20 generations of growth either with and without added cyanocobalamin. Error bars represent standard deviations

of three biological replicates per treatment, and an asterisk (*) denotes significant differences (p < 0.05). Units of N2 fixation are in picomole nitrogen per nanogram of

chlorophyll-a per hour.

BluB homolog against the NCBI non-redundant protein database
returned IMS101 as its best hit followed by other BluB homologs
in other bacterial phyla. These analyses demonstrate retention of
the bluB gene in natural populations, perhaps suggesting that its
maintenance has been selected for over time.

Taken together, these data suggest that Trichodesmium genus
produces the DMB-producing enzyme BluB in culture and
maintains the genetic capability in situ, thereby highlighting
yet another possible critical keystone service provided by
Trichodesmium to microbial communities. Further study
investigating both cobalamin and pseudo-B12 cycling in
Trichodesmium colonies is needed to better characterize this
underappreciated source of cobalamin in the global oceans.

Phylogenetics of btuR—B12 Biosynthesis
and Salvage Pathways
To date, biosynthesis of the corrin ring of the vitamin has
been found to occur via either an oxygen-dependent (aerobic)
or oxygen-independent (anaerobic) pathway (Rodionov, 2003).
The production and use of (pseudo)cobalamin is predicted to
predate oxygenic photosynthesis, and its genetic capacity is
found in virtually all cyanobacterial genomes that have been
analyzed (Heal et al., 2016). This suggests the pathway was
likely present in the earliest members of the lineage and has
been maintained through purifying selection over time. Based on
phylogenetic analyses of several corrin ring biosynthesis genes
of T. erythraeum strains IMS101 and 2175 (Figures S2–S4),

Trichodesmium indeed retains the O2-independent pathway with
all genes clustering deeply within a monophyletic cyanobacterial
clade. This also holds true for genes involved in adenosylation
following corrin biosynthesis to make adenosylcobalamin (Ado-
CBL), an active form of cobalamin (Figures S5–S7).

Ado-CBL can either be salvaged via the adenosylation of

exogenous corrinoids [e.g., cobinamide (Cbi)] or synthesized

de novo. Both of these avenues require ATP:corrinoid
adenosyltransferase encoded by the btuR gene (Rodionov,

2003). Transport of exogenous corrinoids is facilitated by

the highly specific BtuBFCD system in many gram-negative
bacteria (Escalante-Semerena, 2007) followed by further
processing by the BtuR/CobA, CobU, CobS, and CobC
enzymes (Figure 1; Rodionov, 2003; Escalante-Semerena, 2007).
BtuR adenosylates a cobalamin precursor in the biosynthetic
pathway, or other intermediates via the salvage pathway, to
yield adenosylcobinamide (AdoCbi) (Rodionov, 2003; Fang
et al., 2017; Figure 1). In the salvage pathway, catalysis by
the bifunctional CobU enzyme (Tery_3432) yields Adenosyl-
GDP-cobinamide (Figure 1), which is a true intermediate of
the biosynthetic pathway (Woodson and Escalante-Semerena,
2003). Although Trichodesmium does not harbor the BtuBFCD
transport system, btuR, cobU, cobS, and cobC homologs are
present in the genome suggesting Trichodesmium may have
the capacity to salvage exogenous cobalamin with transport
potentially mediated by an alternative mechanism. Furthermore,
transcription of all salvage genes was detected in addition
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to protein products of cobC and all three copies of btuR in
Trichodesmium (Table S1), demonstrating salvage-specific
enzyme activity in the presence of exogenous cobalamin.

Trichodesmium and other cyanobacteria contain three
separate copies of genes retaining btuR domains, which
are broadly distributed throughout the IMS101 genome.
Two of these (Tery_0786, Tery_2088) are predicted to be
190 and 178 amino acids long, respectively, while the third
(Tery_4685) harbors duplicated btuR catalytic domains and
is roughly twice the size. The well-characterized btuR/cobA
homologs of Escherichia coli and Salmonella typhimurium
fall within the Tery_0786 cluster, suggesting this gene in
Trichodesmium may also be involved in adenosylating
cobinamide. While possessing two single-domain proteins
is common among organisms beyond the Cyanobacteria,
Tery_4685 and its homologs (all with duplicated domains) are
almost exclusively unique to the phylum. The only two known
exceptions to this include a chromatophore gene within the
Eukaryote Paulina chromatophora, believed to have recently
undergone an independent endosymbiotic event taking in
a cyanobacterium (Nowack et al., 2008), and a cyanophage
derived from Prochlorococcus that, of only 131 predicted
proteins, possesses a dual-btuR-domain homolog (Sullivan et al.,
2009). Aside from these extraordinary exceptions, this highly
conserved, monophyletic distribution suggests that this intra-
gene duplication event may have occurred after Cyanobacteria
diverged, but very early in the phylum’s lineage.

The concurrent maintenance of all three of these
phylogenetically distinct btuR-domain containing genes within
the Cyanobacteria suggests they may carry out different roles—
possibly with unique specificities for adenosylating varying
compounds (e.g., cobinamide/cob(I)alamin/cob(I)yrinate
diamide)—and stands as evidence of the successful duplication
history this specific domain has experienced. To investigate
this, each individual domain, as determined by its alignment
to the encompassing protein family (pfam02572), was searched
separately against the Refseq protein database (BLASTp) and
phylogenetic analysis was performed. This revealed distinct,
monophyletic clades for each of the co-occurring domains of
Tery_4685 which, along with their conserved spatial relationship,
provides further evidence they may have been under divergent
yet connected evolutionary pressures (Figure 4).

Furthermore, we detected two distinct clades of homologs
to Tery_2088 and Tery_0786 with the former being comprised
entirely of Cyanobacteria, and the latter, while possessing
a monophyletic clade of Cyanobacteria, being overall
taxonomically diverse (Figure 4). While further investigation is
required for any mechanistic insight into their roles, considering
the conservation of Tery_2088 and Tery_4685 (sequence-
wise and distribution-wise), they may be essential to the
cyanobacterial eco-physiology.

Association of B12 Biosynthesis with Iron
Bioavailability
De novo synthesis of vitamin B12 requires cobalt, whose total
dissolved concentrations in the open ocean are in the picomolar

range (5–105 pM L−1) (Knauer et al., 1982) These levels are even
lower than those considering limiting for other bioactive trace
elements like iron (∼200 pM L−1) (Hutchins and Boyd, 2016).
Consistent with those low levels of cobalt in the ocean, Panzeca
et al. (2008) observed the enhancement of B12 production in
cobalt amendment experiments, providing strong evidence that
the synthesis of this vitamin could be limited by the availability
of this trace element (Panzeca et al., 2008). However, the bacterial
multifunctional enzyme CbiXL, which catalyzes the insertion
of cobalt in B12 biosynthesis, contains an iron-sulfur cluster
(4Fe-4S), thereby implicating B12 biosynthesis to be associated
with iron availability (Leech et al., 2003). Archaea have been
demonstrated to contain a comparatively smaller CbiX (CbiXS)
enzyme ranging between 120 and 145 amino acids (aa), whereas
the bacterial CbiXL typically contains >300 aa’s (Leech et al.,
2003).

Trichodesmium, as well as other Cyanobacteria, contain two
phylogenetically distinct copies (Figure S2) of the cbiX gene
(Tery_4741 and Tery_4427)—of which the former contains
an iron-sulfur cluster MXCXXC metal-binding motif (4Fe-4S)
(Leech et al., 2003), while the latter does not (e.g., presumably
not iron-sulfur containing; Figure S8). Both copies were indeed
found to be transcribed indicating simultaneous expression,
although their protein products were not detected (Table S1).
Interestingly, only the longer Tery_4741 (347 aa) is homologous
to annotated Archaea CbiXS proteins harboring conserved
MXCXXC motifs, while no homology was detected with the
shorter Tery_4427 (293 aa) when searched against all Archaea
via BLASTP. Both Tery_4741 and Tery_4427 contain CbiX and
Sirohydrochlorin ferrochelatase (SirB) domains, yet Tery_4741
solely retains both the MXCXXC motif (Figure S8) and a
C-terminal histidine-rich region typically diagnostic of CbiXL

(Brindley et al., 2003; Leech et al., 2003). SirB, involved in
siroheme biosynthesis, shares homology with CbiX but lacks
the C-terminal histidine-rich region resulting in a substantially
shorter peptide (Leech et al., 2003). Interestingly, although
Tery_4427 could have SirB functionality since it lacks the C-
terminal histidine-rich region yet is homologous to Tery_4741
(Figure S8), homology was only detected between Tery_4741
and the Bacillus megatarium SirB homolog. Phylogenetic analysis
places the Tery_4741 gene in a taxonomically mixed clade
comprised of mostly Cyanobacteria and other gram-positive
bacteria, while Tery_4427 resides within a clade comprised
of nearly all Cyanobacteria except for several gram-positive
ones (Figure S2). Additionally, many taxa contain multiple
cbiX gene copies within a single genome. The presence of
two phylogenetically distinct copies (Figure S2) may have
implications for ecological strategy in microbial cobalamin
production where reallocation of iron is enabled by functional
substitution of the iron-sulfur-containing CbiX protein. Similar
iron-sparing strategies such as replacement of the iron-sulfur
protein electron carrier ferredoxin with non-iron-containing
flavodoxin have been demonstrated in cyanobacteria and other
photoautotrophs (Chappell and Webb, 2010; Chappell et al.,
2012; Morrissey and Bowler, 2012). Since many different iron-
containing proteins are involved in broad metabolic pathways
throughout the cell such as photosynthesis, nitrogen fixation,

Frontiers in Microbiology | www.frontiersin.org 8 February 2018 | Volume 9 | Article 189

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Walworth et al. Trichodesmium Iron-Mediated Cobalamin Biosynthesis

FIGURE 4 | All three copies of btuR in IMS101 and maximum likelihood analysis of each catalytic domain of Tery_4685. Maximum likelihood phylogenetic tree

(bootstraps = 100) of individual btuR domains (domain only). Cyanobacteria are colored green. Bootstrap values >50 are noted. Parentheses indicate how many taxa

within a collapsed clade. Scale bar represents average substitutions per site.

and respiration, iron flux (e.g., allocation) to CbiX relative to
other biochemical iron sinks remains to be determined. However,
Trichodesmium does contain the B12-dependent ribonucleotide
reductase (NrdJ; Tery_0428) essential for the reduction of
ribonucleotides to deoxyribonucleotides in DNA synthesis
implicating a critical role for cobalamin in core metabolism.

Future studies examining both functional roles and enzyme
efficiencies under co-limiting iron and cobalamin conditions are
necessary to characterize these enzymes in the context of their
ecophysiology.

Another line of evidence suggesting exogenous iron
association to B12 biosynthesis is the fact that the Trichodesmium
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cobalt reductase orthologue to the Salmonella B12 flavodoxin
(fldA; reciprocal best blast; evalue < 10−42), postulated to
be responsible for the reduction of Cob(II)yrinic acid a,c-
diamide to Cob(I)yrinic acid a,c-diamide (Figure 1; Fonseca
and Escalante-Semerena, 2001), is the iron-stress flavodoxin
gene isiB (Tery_1666)—which has been demonstrated to be
directly regulated by iron bioavailability (Fonseca and Escalante-
Semerena, 2001; Chappell and Webb, 2010; Walworth et al.,
2016). It must be noted that Trichodesmium also contains
another fldA that is not regulated by iron (Chappell and
Webb, 2010), which could also possibly be involved in this
reduction. Indeed, Trichodesmium is limited by iron across
expansive ocean biomes (Sohm et al., 2011; Chappell et al.,
2012; Hutchins and Boyd, 2016), which consequently limits
new nitrogen inputs for primary production as a whole.
Furthermore, since homologs of isiB are highly conserved in
microbes possessing the anaerobic cobalamin biosynthesis
pathway (Helliwell et al., 2016), these data suggest that B12
biosynthesis and thus overall environmental bioavailability could
be influenced by limiting iron. Interestingly, the BioCyc database
(https://biocyc.org) implicates another gene, Tery_4461, as
the cobalt reductase while the KEGG database (http://www.
genome.jp/kegg/pathway.html) implicates isiB (Tery_1666)
as above. However, it is compelling that isiB is indeed the
true ortholog to the empirically investigated Salmonella B12
fldA (see above), which opens the door for future research in
distinguishing the roles of these enzymes relative to cobalamin
metabolism. As previously noted (Gaudu and Weiss, 2000),
mutations to fldA homologs in genetically tractable organisms
(e.g., E. coli) have been lethal, thereby prohibiting a traditional
genetic approach to determine whether fldA is redundant to
co(II)rrinoid reduction for adenosylation or whether it is solely
responsible. Nonetheless, these data and other previous studies
(Gaudu andWeiss, 2000; Heal et al., 2016) implicate a connective
role between two essential micronutrients via prokaryotic core
metabolism, and suggest that iron availability could directly
influence not only nitrogen fixation, but also B12 biosynthesis in
Trichodesmium.

CONCLUSIONS

We provide multiple lines of evidence both in culture and
in situ that suggest Trichodesmium can transcribe and
translate the full genomic pathway to biosynthesize and/or
metabolize cobalamins. Our proof-of-concept meta-analyses
from independent sources and analytical techniques open the
door for more in-depth research into Trichodesmium B-vitamin
dynamics. Since the synthesis of pseudo-B12 is an oxygen-
independent pathway, Trichodesmiummay have originally relied
on pseudo-B12 biosynthesis in conjunction with early nitrogen
fixation (another oxygen independent process). Hence, the
bluB gene may have been acquired horizontally much later as
evidenced by its clustering within Proteobacteria, although it
is prohibitively difficult to confirm this from phylogeny alone.
Future studies will be needed to specifically assess cobalamin vs
pseudo-B12 production in Trichodesmium. Future experiments
could include investigating isotopically labeled cobalamin-

and iron- (co)-limiting molecular physiology with a range of
biogeographically distinct isolates, in addition to analyzing
B-vitamin dynamics directly from natural populations. Since
large areas of the ocean are depleted in both B12 and bioavailable
nitrogen, these data and other future experiments may highlight
an additional keystone role that Trichodesmium populations
could serve in oceanic biomes. Importantly, this role would
distinguish Trichodesmium from other sympatric cyanobacteria
that solely produce pseudo-B12, including other nitrogen fixers
as mentioned above. Hence, cobalamin production may have
aided in the ecological success of Trichodesmium if cobalamins
are indeed used as a “currency” in exchange for other growth
factors supplied by its associated epibionts, as potentially
suggested by B12 auxotrophy in IMS101-associated epibiotic
heterotrophs (Lee et al., 2017a; Romine et al., 2017). Further
research with Trichodesmium isolates devoid of cyanobacterial
epibionts is needed to investigate whether Trichodesmium
can simultaneously produce both cobalamin and pseudo-B12,
thereby potentially giving them the flexibility to exploit different
B12 ecological niches in the oceans. Moreover, Trichodesmium
and other cyanobacteria possess three copies of the btuR
gene, predicted to be involved in de novo synthesis and
corrinoid scavenging. Two of these three copies appear to
be unique to cyanobacteria. Further characterization of these
gene copies may provide critical insight into cyanobacterial
B12 ecophysiology relative to other B12-producing microbes.
Finally, cbiX (Tery_4741) and isiB (Tery_1666) genes within the
cobalamin biosynthetic pathwaymay both be subject to influence
by iron, thereby highlighting a potentially unrecognized role
for iron limitation in simultaneously impacting Trichodesmium
photosynthesis, nitrogen fixation, and B12 biosynthesis.
Experiments examining Trichodesmium iron limitation in
the context of cobalamin limitation could reveal allocation
dynamics of intracellular iron among critical iron-requiring
metabolic pathways, and may indicate if the availability of this
trace metal could potentially limit B12 synthesis in situ. Any
preferential iron allocation strategies that may be employed
by Trichodesmium under these conditions are currently
unknown, but are certainly critical to understanding B12 oceanic
cycling if this diazotrophic cyanobacterium is indeed also
a major euphotic zone source for cobalamins in the global
oceans.

AVAILABILITY OF DATA AND MATERIALS

Raw reads have been deposited in NCBI’s Gene Expression
Omnibus (Edgar et al., 2002) and are accessible through GEO
Series accession number GSE94951 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE94951). The raw read files
used in this study have accession numbers GSM2492342
and GSM2492343. Experimental data are also available
through the Biological and Chemical Oceanography Data
Management Office (www.bco-dmo.org/project/551230 and
www.bco-dmo.org/project/724451).

Protein spectral counts were downloaded directly from a
previously published proteome study using these same IMS101
cell lines (Walworth et al., 2016).
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